
Journal of Applied Mechanics and Technical Physics, Vol. 46, No. 5, pp. 754–765, 2005

VIBRATIONS OF A FLOATING ELASTIC PLATE

DUE TO PERIODIC DISPLACEMENTS

OF A BOTTOM SEGMENT

UDC 532.59:539.3:534.1L. A. Tkacheva

The problem of the behavior of a floating elastic thin plate under periodic vibrations of a bottom seg-
ment is solved using a numerical procedure based on the Wiener–Hopf technique. The effects of the
vibration frequency, the position of the vibrating bottom segment, and the fluid depth on the vibration
frequencies of the fluid and plate are studied numerically.

Key words: surface waves, flexural-gravity waves, elastic plate, Wiener–Hopf technique, diffrac-
tion frequency.

Introduction. Recently, the problem of the hydroelastic behavior of floating elastic plates has been studied
extensively in connection with projects on the construction of floating airfields, artificial islands, and floating
platforms of various applications. The huge sizes of such objects make it difficult to satisfy the similarity criteria
in experimental studies; therefore, numerical modeling plays a great role in their analysis.

The diffraction of surface waves on a floating elastic plate has been studied fairly well. Considerable less
attention has been paid to the forced vibrations of a plate subjected to unsteady loading and the behavior of a
floating elastic plate under earthquake-induced vibrations of a bottom segment. High-frequency vibrations are
studied in [1], where the bottom is modeled by a homogeneous elastic medium (half-space), in which compression
and shear waves propagate from the earthquake epicenter and the fluid is considered compressible and imponderable.
An analytical solution of the problem of an elastic semi-infinite plate for specified periodic vibrations of the bottom
and an incompressible imponderable fluid was obtained in [2] using the Wiener–Hopf technique. A review of existing
numerical techniques for studying the behavior of floating elastic plates is given in [3]. In the present paper, the
Wiener–Hopf technique is employed to study the vibrations of a plate of finite width floating on the surface of
an incompressible ponderable fluid of finite depth under vibrations of a bottom segment in a plane formulation.
The effects of the vibration frequency, the position of the vibrating segment, the and fluid depth on the vibration
amplitudes of the fluid and plate are investigated for conditions of a model airport.

1. Formulation. The hydroelastic behavior of a floating plate under periodic vibrations of a bottom
segment is studied using linear theory. The plate has thickness h and length L0. The left edge of the plate
is taken to be the origin of Cartesian coordinates Oxy. The plate edges are not fixed. The fluid is ideal and
incompressible, and its flow is vortex-free. The plate thickness is assumed to be much smaller than the length of
the waves propagating in the plate. We use the model of thin plates. The boundary conditions are extended to the
unperturbed water surface.

The fluid-velocity potential ϕ satisfies the Laplace equation and the boundary conditions

∆ϕ = 0 (−H0 < y < 0),

ϕy = wt (y = 0), w(x,−H0, t) = u(x) e−iωt,
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D
∂4w

∂x4
+ ρ0h

∂2w

∂t2
= p (y = 0, 0 < x < L0), (1.1)

p = −ρ(ϕt + gw),

ϕt + gw = 0 (y = 0, x ∈ (−∞, 0) ∪ (L0,∞)).

Here H0 is the fluid depth, w is the vertical displacement of the upper surface of the fluid (plate), p is the hydro-
dynamic pressure, g is the acceleration of gravity, D is the flexural rigidity of the plate, ρ and ρ0 are the densities
of the fluid and the plate, t is time, and ω is the vibration frequency. At the edges of the plate, the moment and
shear force should vanish:

∂2w

∂x2
=

∂3w

∂x3
= 0 (y = 0, x = 0, L0). (1.2)

We first consider the case of a point source at the bottom: u(x, t) = u0δ(x−x0). The time dependence of all
functions is expressed by the factor e−iωt. We introduce the characteristic length l = g/ω2 and the dimensionless
variables

x′ =
x

l
, y′ =

y

l
, ϕ′ =

ωϕ

gu0
, w′ =

w

u0
, t′ = ωt

(below, the primes are omitted). The potential is written as ϕ = φ(x, y) e−it. Then, from (1.1) and (1.2), we obtain
the following boundary-value problem for φ:

∂2φ

∂x2
+

∂2φ

∂y2
= 0 (−H < y < 0);

∂φ

∂y
= −iδ(x − x∗) (y = −H); (1.3)

∂φ

∂y
− φ = 0 (y = 0, x ∈ (−∞, 0) ∪ (L,∞)); (1.4)

(
β

∂4

∂x4
+ 1 − d

)∂φ

∂y
− φ = 0 (y = 0, 0 < x < L); (1.5)

∂2

∂x2

∂φ

∂y
=

∂3

∂x3

∂φ

∂y
= 0 (y = 0, x = 0, L); (1.6)

L =
L0

l
, H =

H0

l
, x∗ =

x0

l
, β =

D

ρgl4
, d =

ρ0h

ρl
.

Here L, H , x∗, β, and d are the dimensionless parameters of the problem (the plate length, the fluid depth, the
position of the source of vibrations, the reduced rigidity, and the draft of the plate, respectively). In addition,
the radiation conditions for |x| → ∞ and the regularity conditions at the edges (the local boundedness of energy)
should be satisfied.

2. System of Integral Equations. The problem is solved using the Wiener–Hopf technique in the Jones
interpretation [4]. Let us consider the following functions of the complex variable α:

Φ+(α, y) =

∞∫

L

eiα(x−L) φ(x, y) dx, Φ−(α, y) =

0∫

−∞
eiαx φ(x, y) dx,

Φ1(α, y) =

L∫

0

eiαx φ(x, y) dx, Φ(α, y) = Φ−(α, y) + Φ1(α, y) + eiαL Φ+(α, y).

(2.1)

The function Φ+(α, y) is defined in the upper semiplane Imα > 0, and Φ−(α, y) in the lower semiplane
Im α < 0. These functions can be defined on the entire complex plane by analytic continuation.
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For surface waves, the values of α should satisfy the dispersion equation

K1(α) ≡ α tanh (αH) − 1 = 0,

which has two real roots ±γ and a countable set of purely imaginary roots ±γn (n = 1, 2, . . .) symmetric about the
real axis [4]; γn → inπ/H as n → ∞.

For the flexural-gravity waves propagating in the plate, we obtain the dispersion relation

K2(α) ≡ (βα4 + 1 − d)α tanh (αH) − 1 = 0,

which has two real roots ±α0, a countable set purely imaginary roots ±αn (n = 1, 2, . . .) symmetric about the real
axis, and four complex roots symmetric about the real and imaginary axes [5]. We denote the root lying in the first
quadrant by α−1 and the root in the second quadrant by α−2; αn → inπ/H as n → ∞.

The dispersion functions K1(α) and K2(α) are even. The real roots of the dispersion relations define prop-
agating waves, and the remaining roots define edge waves, which damp exponentially away from the perturbation
source.

We study the behavior of the functions Φ±(α, y). For x → −∞, the potential represents a wave of the form
R e−iγx (R is the complex amplitude of the wave propagating to the left) and a set of exponentially damped waves.
The least damped wave corresponds to the root γ1. Then, Φ−(α, y) is analytic in the semiplane Im α < |γ1| except
for the pole at α = γ. For x → ∞, the potential φ represents a wave of the form T eiγx (T is the complex amplitude
of the wave propagating to the right) and a set of exponentially damped modes. Therefore, the function Φ+(α, y)
is analytic in the semiplane {Imα > −|γ1|} except for the pole at the point α = −γ.

The function Φ(α, y) is the Fourier transform of the function φ(x, y) and satisfies the equation

∂2Φ
∂y2

− α2Φ = 0.

The general solution of this equation has the form

Φ(α, y) = C(α)Z(α, y) + S(α) sinh (α(y + H)), Z(α, y) = cosh (α(y + H))/ cosh (αH). (2.2)

From condition (1.3) at the bottom, we obtain

∂Φ
∂y

(α,−H) = −i eiαx∗ , S(α) = − i eiαx∗

α
.

We denote by D±(α) and D1(α) integrals of the form (2.1) in which the integrand φ is replaced by the left
side of the boundary condition (1.4), and by F±(α) and F1(α) similar expressions in which the integrand is the left
side of expression (1.5). Let us consider the functions

D(α) = D−(α) + D1(α) + eiαL D+(α), F (α) = F−(α) + F1(α) + eiαL F+(α).

The functions D(α) and F (α) are the Fourier transforms of the dispersion functions, which will be understood
in the sense of generalized functions [6]. They satisfy the relations

D(α) =
∂Φ
∂y

(α, 0) − Φ(α, 0), F (α) = (βα4 + 1 − d)
∂Φ
∂y

(α, 0) − Φ(α, 0).

From boundary conditions (1.4) and (1.5), we have

D−(α) = D+(α) = 0, F1(α) = 0,

D1(α) = D(α) = C(α)K1(α) − i eiαx∗
(

cosh (αH) − sinh (αH)/α
)
, (2.3)

F−(α) + eiαL F+(α) = C(α)K2(α) − i eiαx∗
[
(βα4 + 1 − d) cosh (αH) − sinh (αH)/α

]
.

Eliminating C(α) from these relations, we obtain the equation
F−(α) + eiαL F+(α) + i eiαx∗

[
(βα4 + 1 − d) cosh (αH) − sinh (αH)/α

]

= K(α)
[
D1(α) + i eiαx∗

(
cosh (αH) − sinh (αH)/α

)]
, (2.4)

K(α) = K2(α)/K1(α).
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According to the Wiener–Hopf technique, it is necessary to factorize the function K(α), i.e., to write it as
K(α) = K+(α)K−(α),

where the functions K±(α) are regular in the same regions as the function Φ±(α, y). The function K(α) has zeroes
and poles at the points ±γ and ±α0, respectively, on the real axis. We therefore consider the analyticity regions Π+

and Π−, where Π+ is the semiplane Im α > −|γ1| with cuts eliminating the points −α0 and −γ and Π− is the
semiplane Im α < |γ1| with cuts eliminating the points α0 and γ.

Let us introduce the function

g(α) =
K(α)(α2 − γ2)

β(α2 − α2
0)(α2 − α2−1)(α2 − α2−2)

.

The function g(α) does not have zeroes on the real axis, is bounded, and tends to unity at infinity. It is factorized
as follows [4]:

g(α) = g+(α)g−(α), g±(α) = exp
[
± 1

2πi

∞∓iσ∫

−∞∓iσ

ln g(x)
x − α

dx
]
, σ < |γ1|.

The functions K±(α) are defined by the formula

K±(α) =
√

β(α ± α0)(α ± α−1)(α ± α−2)g±(α)
α ± γ

.

In this case, K+(α) = K−(−α). We multiply Eq. (2.4) by e−iαL[K+(α)]−1 and bring it to the form

F+(α)
K+(α)

+
e−iαL F−(α)

K+(α)
− i eiα(x∗−L)(βα4 − d)

cosh (αH)K+(α)K1(α)
= D1(α)K−(α) e−iαL .

Representing the terms on the left side of this equation as the decomposition

e−iαL F−(α)
K+(α)

= U+(α) + U−(α), − i eiα(x∗−L)(βα4 − d)
cosh (αH)K+(α)K1(α)

= L+(α) + L−(α),

we write
F+(α)/K+(α) + U+(α) + L+(α) = D1(α)K−(α) e−iαL −L−(α) − U−(α). (2.5)

We now divide Eq. (2.4) by K−(α) and bring it to the form

F−(α)
K−(α)

+
eiαL F+(α)

K−(α)
− i eiαx∗(βα4 − d)

cosh (αH)K−(α)K1(α)
= D1(α)K+(α).

Representing the terms on the left side of this equation as the decomposition

eiαL F+(α)
K−(α)

= V+(α) + V−(α), − i eiαx∗(βα4 − d)
cosh (αH)K−(α)K1(α)

= N+(α) + N−(α),

we write
F−(α)/K−(α) + V−(α) + N−(α) = D1(α)K+(α) − V+(α) − N+(α). (2.6)

The functions U±(α), V±(α), L±(α), and N±(α) are defined by the expressions [4]

U±(α) = ± 1
2πi

∞∓iσ∫

−∞∓iσ

e−iζL F−(ζ) dζ

K+(ζ)(ζ − α)
; V±(α) = ± 1

2πi

∞∓iσ∫

−∞∓iσ

eiζL F+(ζ) dζ

K−(ζ)(ζ − α)
;

L±(α) = ∓ 1
2π

∞∓iσ∫

−∞∓iσ

eiζ(x∗−L)(βζ4 − d) dζ

cosh (αH)K+(ζ)K1(ζ)(ζ − α)
; (2.7)

N±(α) = ∓ 1
2π

∞∓iσ∫

−∞∓iσ

eiζx∗(βζ4 − d) dζ

cosh (αH)K−(ζ)K1(ζ)(ζ − α)
, (2.8)

where σ < |γ1|.
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The left side of Eq. (2.5) contains a function analytic in the region Π+ and the right side contains a function
analytic in the region Π−. Analytic continuation yields a function analytic in the entire complex plane. According
to Liouville’s theorem, this function is a polynomial. The degree of the polynomial is determined by the behavior
of the functions as |α| → ∞. The condition of local boundedness of energy implies that at the plate edge, the
velocities have a singularity of order not higher than O(r−λ) (λ < 1 and r is the distance to the plate edge). Then,
for |α| → ∞, the function F−(α) has order not higher than O(|α|λ+3) and D+(α) has order not higher than
O(|α|λ−1) [6]. At infinity, the functions K±(α) have order O(|α|2) because g±(α) → 1 as |α| → ∞. Therefore, the
degree of the polynomial is equal to unity and

F+(α)/K+(α) + U+(α) + L+(α) = a1 + a2α. (2.9)

Similarly, from Eq. (2.6) we have

F−(α)/K−(α) + V−(α) + N−(α) = b1 + b2α. (2.10)

Here a1, a2, b1, and b2 are unknown constants determined from the edge conditions (1.6).
Equations (2.9) and (2.10) yield the system

F+(α)
K+(α)

+
1

2πi

∞+iσ∫

−∞+iσ

e−iζL F−(ζ) dζ

(ζ − α)K+(ζ)
= a1 + a2α − L+(α),

F−(α)
K−(α)

− 1
2πi

∞−iσ∫

−∞−iσ

eiζL F+(ζ) dζ

(ζ − α)K−(ζ)
= b1 + b2α − N−(α).

(2.11)

Let us determine the constants a1 and a2. We have

D1(α)K−(α) e−iαL −L−(α) − U−(α) = a1 + a2α.

Substitution of the expression for U−(α) into this equation yields

D1(α) =
eiαL

K−(α)

[
a1 + a2α + L−(α) − 1

2πi

∞+iσ∫

−∞+iσ

e−iζL F−(ζ) dζ

K+(ζ)(ζ − α)

]
.

In view of (2.2) and (2.3), the inverse Fourier transformation yields the following expression for the potential:

φ(x, y) =
1
2π

∞∫

−∞

e−iα(x−L) cosh (α(y + H))
cosh (αH)K−(α)K1(α)

[
a1 + a2α + L−(α) − 1

2πi

∞+iσ∫

−∞+iσ

e−iζL F−(ζ) dζ

K+(ζ)(ζ − α)

]
dα

+
1

2πi

∞∫

−∞

e−iα(x−x∗) sinh (α(y + H)) dα

α

− 1
2π

∞∫

−∞

e−iα(x−x∗)(cosh (αH) − sinh (αH)/α)Z(α, y) dα

K1(α)
. (2.12)

Multiplying the numerator and denominator by K+(α) and performing some transformations, we obtain the
following expression for the derivative of the potential:

∂φ

∂y
(x, 0) =

1
2π

∞∫

−∞

e−iα(x−L) α tanh (αH)K+(α)
K2(α)

[
a1 + a2α − L+(α) − 1

2πi

∞+iσ∫

−∞+iσ

e−iζL F−(ζ) dζ

K+(ζ)(ζ − α)

]
dα

− 1
2πi

∞∫

−∞

e−iα(x−x∗) dα

cosh (αH)K2(α)
. (2.13)
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The integration contour for the outer integral should be chosen such that it completely lies in the intersection
of the regions Π+ and Π−. It is possible to choose the integration contour on the real axis so that encircles the
points α0 and γ from below and the points −α0 and −γ from above.

In the inner integral, Imα < σ. However, this integral as a function of α can be defined by analytic
continuation on the entire complex plane. This integral is calculated using residue theory. The function K+(ζ) has
zeroes at the points −αj (j = −2,−1, 0, . . .) and poles at the points −γ,−γj (j = 1, 2, . . .). The integrand has poles
at the points ζ = −αj (j = −2,−1, 0, . . .) and at the point ζ = α. Therefore,

1
2πi

∞+iσ∫

−∞+iσ

e−iζL F−(ζ) dζ

K+(ζ)(ζ − α)
= −e−iαL F−(α)

K+(α)
+

∞∑
j=−2

eiαjL F−(−αj)
K ′

+(−αj)(αj + α)
.

We consider the case x∗ < x < L. The outer integral in (2.13) is also calculated using residue theory. In the
first and third integrals, the integration contour for α is closed in the upper semiplane, and in the second integral,
it is closed in the lower semiplane. We obtain

∂φ

∂y
(x, 0) = i

∞∑
m=−2

eiαm(L−x) αm tanh (αmH)K+(αm)
K ′

2(αm)

×
[
a1 + a2αm − L+(αm) −

∞∑
j=−2

eiαjL F−(−αj)
K ′

+(−αj)(αj + αm)

]

− i
∞∑

m=−2

eiαmx αm tanh (αmH)F−(−αm)
K ′

2(−αm)
−

∞∑
m=−2

eiαm|x−x∗|

cosh (αmH)K ′
2(αm)

.

Substitution of the above expression into boundary conditions (1.6) for x = L yields two equations:
∞∑

m=−2

αn
m tanh (αmH)K+(αm)

K ′
2(αm)

[
a1 + a2αm − L+(αm) −

∞∑
j=−2

eiαjL F−(−αj)
K ′

+(−αj)(αj + αm)

]

+ (−1)n
∞∑

m=−2

eiαmL αn
m tanh (αmH)F−(−αm)

K ′
2(−αm)

+
1
2π

∞∫

−∞

αn−1
m eiαm(L−x∗) dα

cosh (αmH)K ′
2(αm)

= 0,

n = 3, 4. (2.14)

The dispersion relation under the plate implies

αm tanh (αmH) = −K1(αm)/(βα4
m − d).

Substitution of this expression into (2.14) yields
∞∑

m=−2

αn−1
m K+(αm)K1(αm)
K ′

2(αm)(βα4
m − d)

[
a1 + a2αm − L+(αm) −

∞∑
j=−2

eiαjL F−(−αj)
K ′

+(−αj)(αj + αm)

]

+ (−1)n
∞∑

m=−2

eiαmL αn−1
m F−(−αm)K1(−αm)

K ′
2(−αm)(βα4

m − d)
+

1
2π

∞∫

−∞

αn−1
m eiαm(L−x∗) dα

cosh (αmH)K ′
2(αm)

= 0,

n = 3, 4. (2.15)

We note that the first term in (2.15) is the sum of residues at the points αm for the integral

1
2πi

∞∫

−∞

αn−1K1(α)K+(α)[a1 + a2α − L+(α)] dα

K2(α)(βα4 − d)
=

1
2πi

∞∫

−∞

αn−1[a1 + a2α − L+(α)] dα

K−(α)(βα4 − d)
.

We reduce this integral to the sum of residues in the roots of the polynomial βα4 − d. Proceeding similarly with
the remaining sums, we obtain the following system of equations for the constants a1 and a2:
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a1

4∑
k=1

zn−2
k K+(zk) + a2

4∑
k=1

zn−1
k K+(zk)

=
4∑

k=1

zn−2
k K+(zk)

[
L+(zk) − 1

2πi

∞+iσ∫

−∞+iσ

e−iζL F−(ζ) dζ

K+(ζ)(zk − ζ)

]
, n = 1, 2, (2.16)

where zk are roots of the polynomial βα4 − d.
Let us now determine the constants b1 and b2. From Eqs. (2.6) and (2.10), we have

D1(α)K+(α) − V+(α) − N+(α) = b1 + b2α.

Substitution of the expression for V+(α) and N+(α) into this equation yields

D1(α) =
1

K+(α)

[
b1 + b2α + N+(α) +

1
2πi

∞−iσ∫

−∞−iσ

eiζL F+(ζ) dζ

K−(ζ)(ζ − α)

]
.

The inverse Fourier transformation with allowance for (2.2) and (2.3) leads to the following representation
for the potential φ:

φ(x, y) =
1
2π

∞∫

−∞

e−iαx Z(α, y)
K+(α)K1(α)

[
b1 + b2α + N+(α) +

1
2πi

∞−iσ∫

−∞−iσ

eiζL F+(ζ) dζ

K−(ζ)(ζ − α)

]
dα

− 1
2πi

∞∫

−∞

e−iα(x−x∗) Z(α, y)(cosh (αH) − sinh (αH)/α)dα

K1(α)

+
1

2πi

∞∫

−∞

e−iα(x−x∗) sinh (α(y + H)) dα

α
. (2.17)

For the derivative of the potential, we obtain the expression

∂φ

∂y
(x, 0) =

1
2π

∞∫

−∞

e−iαx α tanh (αH)K−(α)
K2(α)

[
b1 + b2α + N+(α) +

1
2πi

∞−iσ∫

−∞−iσ

eiζL F+(ζ)dζ

K−(ζ)(ζ − α)

]
dα

− 1
2πi

∞∫

−∞

e−iα(x−x∗) dα

cosh (αH)K2(α)
.

Substitution of this expression into boundary conditions (1.6) leads to the following system of equations for b1

and b2:

b1

4∑
k=1

zn−2
k

K+(zk)
+ b2

4∑
k=1

zn−1
k

K+(zk)
=

4∑
k=1

zn−2
k

K+(zk)

[
− N+(zk) +

1
2πi

∞+iσ∫

−∞+iσ

e−iζL F−(ζ) dζ

K+(ζ)(zk − ζ)

]
, n = 1, 2. (2.18)

Thus, the problem reduces to solving system (2.11), (2.16), (2.18).
3. Solution of the System. The integrals in Eqs. (2.11), (2.16), and (2.18) are calculated using residue

theory. We introduce the new unknowns

ξj =
F+(αj)

α2
jK+(αj)

, ηj =
F−(−αj)

α2
jK−(−αj)
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for which we obtain the system

ξ − Cη − Aa = F1,

η − Cξ − Ãb = F2,

Gη + Ba = F3,

Sξ + Db = F4.

(3.1)

Here ξ, η, Fn, a, and b are the vectors {ξj}, {ηj}, {F (n)
j }, {ai}, and {bi} and C, G, S, B, D, A, and Ã are the

matrices {Cjm}, {Gim}, {Sim}, {Bim}, {Dim}, {Aji}, and {Ãji}:

Cjm =
Qm

α2
j(αm + αj)

; Qm =
eiαmL α2

mK2
+(αm)K1(αm)

K ′
2(αm)

; Ãji = (−1)i−1αi−3
j ;

Aji = αi−3
j ; Gim = Qm

4∑
k=1

zi−2
k K+(zk)
zk + αj

; Sim = −Qm

4∑
k=1

zi−2
k

K+(zk)(zk − αj)
;

B11 =
4∑

k=1

K+(zk)
zk

, B12 = B21 =
4∑

k=1

K+(zk); B22 =
4∑

k=1

zkK+(zk);

D11 =
4∑

k=1

1
K+(zk)zk

; D12 = D21 =
4∑

k=1

1
K+(zk)

; D22 =
4∑

k=1

zk

K+(zk)
;

F
(1)
j = −L+(αj)/α2

j ; F
(2)
j = −N−(−αj)/α2

j ;

F
(3)
i =

4∑
k=1

zi−2
k K+(zk)L+(zk); F

(4)
i =

4∑
k=1

zi−2
k N−(zk)/K+(zk);

L+(α) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−i
∞∑

m=0

eiγm(x∗−L)(βγ4
m − d)

cosh (γmH)K+(γm)K ′
1(γm)(γm − α)

− i
eiα(x∗−L)(βα4 − d)

cosh (αH)K+(α)K1(α)
, x∗ > L,

i

∞∑
m=−2

eiαm(L−x∗) K+(αm)(βα4
m − d)

cosh (αmH)K ′
2(αm)(αm + α)

, x∗ < L;

N−(α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−i

∞∑
m=0

e−iγmx∗(βγ4
m − d)

cosh (γmH)K+(γm)K ′
1(γm)(γm + α)

− i
eiαx∗(βα4 − d)

cosh (αH)K−(α)K1(α)
, x∗ < 0,

i

∞∑
m=−2

eiαmx∗ K+(αm)(βα4
m − d)

cosh (αmH)K ′
2(αm)(αm − α)

, x∗ > 0.

After solving system (3.1), we find the deflection of the plate and the elevation of the free surface away from
the plate. We have

C(α) =
(
F−(α) + eiαL F+(α) + i eiα0x∗ [(βα4 + 1 − d) cosh (αH) − sinh (αH)/α]

)
/K2(α).

The Fourier transformation yields

φ(x, y) =
1
2π

∞∫

−∞

e−iαx Z(α, y)[F−(α) + eiαL F+(α)]dα

K2(α)
+

1
2πi

∞∫

−∞

e−iα(x−x∗) sinh (α(y + H)) dα

α

− 1
2πi

∞∫

−∞

e−iα(x−x∗) Z(α, y)
K2(α)

[
(βα4 + 1 − d) cosh (αH) − sinh (αH)

α

]
dα.
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Fig. 1. Dimensionless parameter d versus frequency ω.

The plate deflection w(x) and the dimensionless bending moments M(x) are defined by the formulas

w(x) =
∞∑

j=−2

Wj(x)
K ′

2(αj)
, M(x) =

βl|w′′(x)|
Ld

,

Wj(x) = −i
eiαj |x−x∗|

cosh (αjH)
+

α2
jK1(αj)K+(αj)

βα4
j − d

[ηj eiαjx +ξj eiαj(L−x)].

The first term in Wj(x) is the wave from the vibration source. The values of ξj define the complex amplitudes of
the waves reflected from the right edge of the plate, and ηj define those reflected from the left edge.

Expressions (2.12) and (2.17) gives the amplitudes of the free-boundary elevation ζ1 for x → −∞ and ζ2 for
x → ∞:

ζ1 = − i eiγx∗

cosh (γH)K ′
1(γ)

− 1
K ′

1(γ)K+(γ)

[
b1 + b2γ + N+(γ) −

∞∑
j=−2

eiαjL K2
+(αj)K1(αj)α2

jξj

K ′
2(αj)(γ − αj)

]
,

ζ2 = − i e−iγx∗

cosh (γH)K ′
1(γ)

− e−iγL

K ′
1(γ)K+(γ)

[
a1 − a2γ + L−(−γ) −

∞∑
j=−2

eiαjL K2
+(αj)K1(αj)α2

jηj

K ′
2(αj)(γ − αj)

]
,

L−(−γ) = − i eiγ(L−x∗) K+(γ)
cosh (γH)

− L+(−γ), N+(γ) = − i eiγx∗ K+(γ)
cosh (γH)

− N−(γ).

We now consider the general case. Let the bottom have a segment [x1, x2] which vibrates periodically and
vertically with a specified displacement law u(x), x ∈ [x1, x2]. In this case, multiplying the obtained solution by u(x∗)
and integrating the result by x∗, we find the solution for the general case. In the case where the vibrating bottom
segment is under the plate edge, the sums in the expressions for L+(α) and N−(α) converge weakly; therefore, in
calculating their values by formulas (2.7) and (2.8), one first needs to integrate over x∗ and then to use residue
theory.

4. Numerical Results. The calculations were performed for a model airport for the following parameter
values: plate rigidity D = 1.764·1011 N ·m2, length L0 = 1000 m, fluid density ρ = 1025 kg/m3, and plate draft 5 m.
The fluid depth was varied. In this case, the dimensionless parameter d is of significance and cannot be omitted (as
was done in a number of papers). A curve of the parameter d versus frequency ω is shown in Fig. 1. It is evident
that the parameter d increases rapidly with increase in the frequency, and for ω > 1 sec−1, it should be taken into
account.

The vertical displacements of the vibrating bottom segment were specified as u(x) = u0 cos2(π(x−x0)/(2s)),
where x0 is the center and s is the half-width of the segment (s = 200 m). The dependence of the vibration

762



0.5 1.0 1.5

0.5

1.0

0 w, sec-1

0.5 1.0 1.5

0.5

1.0

0 w, sec-1

0.5 1.0 1.5

0.5

1.0

0 w, sec-1

0.5 1.0 1.5

0.5

1.0

0 w, sec-1

w,M,z1,z2

w,M,z1,z2

w,M,z1,z2

R

b

à

d

c

32 1

21

2

2

1

1

3

2

1,2

1

2
1

Fig. 2. Reflection coefficient R in the problem of surface-wave diffraction (a), the plate deflection
amplitude w, the moment M , and the free-boundary elevation in the far-field region (ζ1, ζ2) versus
frequency for various positions of the vibrating segment (b) x0 = 500 m, (c) x0 = 300 m, and
(d) x0 = 0).
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Fig. 3. Distribution of the plate deflection amplitudes (a) and moment (b) for various frequencies
in the asymmetric case: ω = 0.1 (1), 0.3 (2), 1 (3), and 2 sec−1 (4).

Fig. 4. Effect of the fluid depth on the plate-deflection amplitude (a) and moment (b) in the
asymmetric case for ω = 0.7 sec−1: H0 = 100 (1),=200 (2), and 500 m (3).

amplitudes of the fluid and the plate on the frequency, the position of the vibrating segment, and the fluid depth
was studied numerically.

Figure 2a gives a curve of the reflection coefficient R versus frequency in the problem of surface-waves
diffraction for a fluid of depth H0 = 100 m (the calculations were performed using the technique of [7]). In [8],
it is shown that in the case of shallow water, zero values of the reflection coefficient correspond to the diffraction
frequencies (resonance frequencies) at which the vibration amplitudes of the plate and the fluids are maximal in the
diffraction problem. Obviously, this is also valid for a fluid of finite depth. An increase in the vibration amplitudes
of the plate and the fluid at the diffraction frequencies is also noted in the problem of forced vibrations of a floating
plate under periodic loading [9].

Figure 2b–d shows curves of the fluid and plate vibration amplitudes versus frequency for x0 = 0 (d) and
500 (b) and 300 m (c) (s = 200 m; the fluid depth is H0 = 100 m). The dashed curves 1 and 2 refer to the fluid-
elevation amplitudes at infinity on the left and right of the plate, the solid curves 1–3 refer to the plate-deflection
amplitudes at the left and right edges and at x = x0; the dotted curves 1 and 2 refer to the maximum amplitude
of the dimensionless bending moment on the plate and the amplitude at the point x = x0 (in Fig. 2b, the solid
and dashed curves 1 and 2 coincide by virtue of symmetry and in Fig. 2d, x0 = 0, i.e., the left edge is above the
center of the vibrating segment). As is evident from Fig. 2, the dependences of the vibration amplitudes of the fluid
and plate on frequency are nonmonotonic. The vibration amplitudes increase at the diffraction frequencies (for the
symmetric case, the diffraction frequencies corresponding to the asymmetric modes vanish). At the point x0, the
deflection amplitudes vary less significantly than the amplitudes of the edges. The position of the vibrating bottom
segment with respect to the plate has a significant effect on the nature of the vibrations.
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Figure 3 shows the distribution of the plate- deflection amplitudes and the moment for various frequencies.
The fluid depth H0 = 100 m, and x0 = 300 m. At frequencies close to zero, the plate-deflection amplitudes are
almost equal at all points (curve 1). With increase in the frequency, the deflection amplitudes become much higher
at the point x0 (the center of the vibrating segment) and at the edges than in the remaining part of the plate
(curve 2). With further increase in the frequency, the amplitude of the waves reflected from the edges decrease and
the number of ridges and valleys in the middle part of the plate (curves 3 and 4) increase. At high frequencies, the
maximum deflection amplitudes are reached above the vibrating bottom segment and the maximum stresses can
also be observed on the other segments of the plate.

Figure 4 shows the effect of the fluid depth on the plate-deflection amplitude and the dimensionless bending
moment for ω = 0.7 sec−1 and x0 = 300 m. As the fluid depth increases, the plate-vibration amplitude decreases.

Thus, the calculation results and a comparison of them with the results for a semi-infinite plate [2] show
that the edges have a significant effect on the deflection and stress amplitudes in the plate. For a plate of finite
width, the interaction of the propagating modes reflected from the edges and corresponding to the real root α0

largely determines the deflection amplitudes and stresses in the plate.
This work was supported by the Russian Foundation for Basic Research (Grant No. 02-01-00739) and the

foundation “Leading Scientific Schools of Russia ” (Grant No. NSh-902.2003.1).
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